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b“‘ Abbreviated title: Homogeneity and the Markov propert
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N0 Summary: . ? :
T o % -
iﬁ y The strqp¢'Markov property of a process X at a stopping time
‘ JJ i A - /‘ ! “A:\
a, T may be/split into a conditqonal independence part (CI) and a
"‘;‘ , - ’ ‘ A
R homogeneity part (H). However;, it turns ‘qut that (H) often implies
. \ \'\‘ )
qg - at least some version of (CI)¥ In the preSg t paper, we shall assume
A, , >~ o
%% that (H) holds on the set {xtLB}, for all stopping times T such that
Y !
Q? xtLF a.s., where F i? a closed recurrent subset of the state space S,
: Ve ‘_y(“P” subs-T @ '
;3: while BQF. If F=S, then (CI) will hold on {X. B} for every stopping
L Faw
%. time t, so in this case X is regenerative in B. In the general case,
k .
(W)
KL the same statement is conditionally true in a suitable sense, aiven
. delte
;% some shift invariant p-field. (‘”“"’“'*“ TTTm—
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{: 1. Introduction. The strong Markov.property of a process X at
.' ————————————————

g a stopping time T,

i X

B (SM) Plosx€|£] =0 ° a.s.,

:& may be split into a conditional independence part,

e':

v ] _ ]

. (CI) ple s xe- (%] = r[e_+xe |X.] a.s.

and a homogeneity part,

s—

L
- (H) ple +Xe:]X,] =0 a.s.

(See Section 2 for notation.) However, it is known that condition

Iy (H) alone, for all extended valued stopping times T, implies the

” strong Markov property (SM) for all 7. (Cf. Blumenthal and Getoor
&

N [2], Proposition 8.2.)

N

W A related result was obtained as Corollary 2.5 of [5], where it
L

was shown, in the discrete time case, that recurrence at every

state plus the validity of (H) for every finite stopping time will
force X to be a Markov chain (and then automatically strong Markov).
ﬁl . This can easily be seen directly (as pointed out to me by H. F8llmer

and M. Jacobsen), but it was originally deduced from a general result

B in exchangeability, via a characterization of recurrent and locally
$ homogeneous sequences as mixtures of Markov chains. (In this paper,
;g_ mixing will always refer to the associated probability measures.)

S By local homogencity is meant that e e X and 9 o X should

;; have the same distribution for every pair of stopping times o and T
? such that Xc and Xr are non-random and equal. Note that this is the
K,

[

same as condition (H) for all stopping times T with fixed Xpe

Extensions of these results to the continuous time case were atterpted

m in Section 4 of [5], and a further discussion was given in [6}.

§ The present work emerged from an attempt to find a unified

E; approach to these results, and to develop a general theory, linking

$ the three conditions (SM), (CI) and (H), both in discrete and !
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continuous time. As it turns out, an appropriate hypothesis
is to assume that (H) should hold a.s. in the set {XteB}, for every
stopping time T such that X €F a.s. Here F is a closed subset of
the state space S, while B is a Eorel subset of F, and it is further
assumed that X is recurrent in F, in the sense that

sap U :':r,P'Ff:')" a.s. (1.1)
For convenience, the above conditions will be labelled H(F,R) .

Note that recurrence holds automatically when F=S. Thus H(S,B)
means simply that (H) should hold a.s. on {XfeB} for every finite
stopping time T. As a special case of Theorem 2 below, it will be
seen that X is a strong Markov process, whenever H(S,S8) is fulfilled,
without any further recurrence conditions on X. This result (mentioned
already in [6]) improves the characterizations of Markov processes
and chains given in [5]. More generally, it will be seen that H(S,B)
for an arbitrary B implies regeneracy in B, in the sense that (SM)
will hold a.s. in {XteB} for every stopping time T.

The situation becomes more complex when F is a proper subset
of S. In that case we can only prove that X reaenerates in a
certain subset Br of B, to be referred to as the reqgular part. The
regeneracy may fail in the remaining singular part B, but Theorem 3
shows that (SM) remains conditionally true in a suitable sense,
given the o-field induced by the shift invariant sets. Indeed, we
shall even prove the stronger statement that X is a mixture of
processes regenerating in Bs’ and we shall give an explicit
expression for the associated transition kernel.

To get a proper understanding of these results and their proofs,
it is necessary to look at other ways of characterizing the sets
Br and Bs. The original definition is analytical, in terms
of the kernel Q, but Theorem 1 gives alternative descriptions in terms
of the sample path behavior of X. When both F and B reduce to a

single state s, it turns out that BS=B={S}, so in this case X will
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be conditionally regenerative at s. Since the invariant o-field

éé is independent of s, we may con¢lude, in the context of recurrent

ﬁ: processes in countable state spaces, that X is mixed Markov when-

:3 ever H({s},{s}) holds for every state s. This is essentially the

g? characterization of local homogeneity mentioned above.

%ﬁ ‘ It may seem unsatisfactory to have different descriptions of

@g . the behavior in the regular and singular parts of B. In Theorem 4,
i%l it will be shown that (SM) is conditionally true in the entire B,

3% given some suitable invariant o-field. Unfortunately, the associated
f@ transition kernel will typically depend on the choice of conditioning
%: o-field in this case, and there seems to be no natural choice of

*& the latter. Furthermore, it is no lonaer clear, in general, whether
gl X can be obtained as a mixture of regenerative processes.

;ﬁ: As for the organization of the paper, precise statements of

a, ) the four main results described above will be given in the next

;? i section, with the appropriate framework duly specified. The

:% proofs will then be given in Sections 3-7. Finally, we give in

-

b

Section 8 a simple example, designed to illustrate the various

complications which may arise.
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" ;==§g;g=£ggg;§§é Throughout the paper, we shall consider a

j fixed random process X, defined on some complete probability

:l space (N, ¥7,P). The paths of X are assumed to lie in the space

. D=D(R+,S) of right~-continuous functions w: R+—+ S with left-hand

s limits on (0,w). Here § is taken to be a separable metric space,

: and for the last two theorems we shall even assume that S is

i complete. )
2 The o-field in S is taken to be the Borel field f, while D

? is endowed with the o-field £ generated by the one-dimensional

projections ﬂ%: LA A from D to S. The process X is assumed

to be adapted to some right-continuous filtration {?;}c:?} such

TR P

that 75 contains all P-null sets of F.

As in Section 1, we shall consider some fixed closed and

recurrent set FC S and some Borel set BCF, and we shall assume

- N
P P B RS Sl el

that condition H(F,B) is fulfilled. Here the shift operators o

t>0, on D are defined by

1y e

(etW)s =Wk s,t>0, weD,

i

and Q° is assumed to be a normal probability kernel from S§ to D,

where normal means that

ngweoz wo=x} = 1, X€S. (2.1)

R i g AT

Notﬁwtq§§”eti§mi§ measurable for every stopping time T, and that
the}recqrrencg;re;étion (1.1) defines a measurable event. Standard
fac%s like thesefwilllusually be stated without proofs, if mentioned
" at é;;lwépd«wgvrefer_tq Dellacherie and Mever [4] for details.

k ;A basic role in thé sequel will be played by the D-set

_— fw. Oeg}h ﬂo;lw w e{w JUF }
t:

s g

con51st1ng of those paths which start in B and whose excursions

from the starting p01nt lie entirely outside F. In terms of A, we may

a2

now define. the regular:and singular parts of B as

" - ST . L
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= {xeB: Q*A=0}, By = {xeB: Q*A=l}. |
since A°=D\A belongs to Souslin &, we have Aeﬁf, while Br,BSGf*,
where the star indicates universal completion. In particular cases,
such as when F=S, we have A€¢® and hence Br,Bsef} which simplifies
some of the arguments below. Note, however, that A«% need not be
true in general (cf. Dellacherie [3]).

We proceed to state our first main result, which will play a
key role throughout the paper. Here we show that the set B‘\(Bru)Bs)
is thin, in the sense that X, lies a.s. outside that set for everv
stopping time T. The sets where X, hits Br or Bs respectively will
further be characterized directly in terms of the sample paths
of X, without reference to the kernel Q. Finally we show that Bs
is equivalent, from the point of view of hitting at stopping

times, to a Borel set Bé, and we describe, in terms of the sample

paths of X, the random set
{tz_O; XtéBéi,
which will play such an important role in the subsequent proofs.
For technical reasons, we shall allow the stopping times to

take infinite values. For an appropriate interpretation in that

case, let us introduce an auxiliary coffin state &, and define

X =2 and © »*X=4d,
00 W —_—

THEOREM 1. For everyv stopping time T, we have

{GT‘XGA} = {XteBs} = {XtGB\ B} a.s. (2.2)

Moreover, there exists a Borel set R' c:Bs such that

[t>0: © <Xea} = {t>0: X €B_} a.s. (2.3)

Here are some consequences of a technical nature which will be

useful below:

‘)“" * "* :'G‘:: -’

X ) \ 2 A e e Py AN 1Y 11 ) Dy r;".»"}"*
1O :“3;2..4. S0 c“ ::‘s." J-J-} ,’3. }'-\'A'}‘ v(’)»’* .,.\_ -f-?'
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COROLLARY. The random set M is optional. Moreover, M is a.s.

right-closed and either empty or unbounded. Finally, we have for

h every stopping time T

. (X €B } = {TeM} a.s.

‘ At this point, one might try to simplify the setting by ’
redefining Q on the set B‘\(Brg)Bé), such as to make QXA=O hold
5 for all x&B‘\Bé. However, this would lead to new complications,
. in general, since the altered version of O may not be measurable
with respect to 2.

The next result shows that X is regenerative at visits to B_.
* If F=S, then X is a.s. absorbed when it first hits Bé, and the
regenerative property extends to the entire B. In the particular

i
? case when even B=S, X is then a strong Markov process. This is
)

the result alluded to in [6], and proved for discrete time

*

already in [5].

THEOREM 2. Condition (SM) holds a.s. in {XteBr} for every

[ ¥

stopping time T. If F=S, the validity extends to {XzEB}.

-

The second statement will he slichtly improved below. However,

it is generally impossible to extend the regeneracy of X to the

o P SR

whole of B, as will be seen from Example 1 in Section 8.

- As noted above, X becomes Markov with transition kernel Q,

o W}

when B=F=S. Though the original Q need not satisfy the Chapman-
Kolmogorov identity, as required in the standard axiématic setup,

= it can be modified to do so under broad conditions, as shown by .
. walsh [7].

For the remaining results, the state space S will be assumed

3 to be complete, and hence Polish. Then so is D in the Skorochod-

v Stone topology, which ensures the existeuce of regqular conditional

e, distributions for X,

-‘,."'-.'S*- LTI R bRy
LW, \‘:‘l‘. Wae v\'t'l‘v et

A} -
N " ""-T'-'“. t.‘ " ‘5. - -;-‘ﬂ.‘-‘\ AR "-.\\' " ‘*\;\-s\_\‘-\.\._.‘_. " \h-.‘\.;. ::d’m'\- ‘\}.-_..-..-
- » .‘ B ~ .\m At \' - "'*).' ., _
y NES , “ '\ - N 'y. o - . Sn

“*" g -t Sy e AR SR

‘

» Al [



[T -
N
Sl o o "
Pty

Before stating the next main result, we shall need to introduce
some further notation. Let us first define the hitting time for Bé
z(w) = 1nf1t>0 w eBs!, weD,
and put {=z.X. Then ¢{ is a stopping time, so X, is a random variable,
and we may cdefine the measure
n o= PiXC(—', Gl (2.4)

and the associated Q-mixture
X
n - X - g )
0" = JoTu(dx) = E[Q i ¢ew]

where E[-;C] denotes P-inteqration over the set C. Introducing the

shift invariant &-field 7 in D, given by

. % -
7= {169 o l1=1, t>0},

we may next define the conditional distribution QP[~}j] as the
Qp—a.e. unigue probability kernel from (D,J) to (D,9), satisfying
JoP[j7]aol = F(-nD),  1eT.
I

Apart from the shift operators et, we shall also need the

killing operators kt' given for O<t<2 by
w _, sct,
(kyw) = 1 S
2, s>t.

Note that the mappings kt and X£ make sense even when t is a function

of w. In particular,
ﬂéw = wez(w), weD,

By d(ﬂé) and c%kz) we shall mean the o-fields in D generated by the

mappings 7é and kz respectiveiy. A relation between o-fields of
the form ¢ ¢' a.e. m means that £ lies in the m-completion of &'
and similarly, ('=¢' a.e. m means that & and ¢' have the same m-

completion.

The process X is said to be conditionally regenerative in a

certain set, if X is regenerative in the set under almost every

conditional law. Since the set of all stopping times is usually

» - LI SN TR AR \'\\‘\-\\\ R |
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e uncountable, this condition is much stronger, at least formally, k
‘!
;;E than the corresponding property for every fixed stopping time. l
RN
‘o,
§¢ We are now ready to give a complete description of the
¥
o behavior in Bs, and to characterize thoge o-fields which yield
i
B )
?i conditional regeneracy there. In particular, this will enable us to
o . . . . . .
g% deterrine precisely when X is regenerative in the entire B.
a0 . . -
%& THECREM 3. For every stopping time ¢, we have
. () - — —l,’; - u ieel. . | .
,::é.. p{e.-xe. %, X 7] =of[-j7]+x a.s. in {X €B_}, (2.5)
N . . . -1-

) and X is a.s. conditionally regenerative 1in Bs’ given X lJZ More
7 . *
& generally, a sub-o-field €< $ satisfies

‘. -
K - . . - -‘l T Nl } —1 N . "
:‘5‘: ple,-xe %, X €] = Pl oxe-|x,, X ¢[ a.s. in {X €By} (2.6)
$ il
:ﬁ for all stopping times T, iff
e .
2 VU Ctvo(T,)C Jvotk,) a.s. P{Xe-,¢<of, (2.7)
t% and in that case the first statement holds with X—%f in place of x"17.
S
g% COPOLLARY. The process X is regenerative in B iff

L

_l"!

2 X ~7' = c(xg) a.s. on {¢<u$
0
N or, egquivalently, iff
- .

» = (1 a.e, .

o 7 (Fy)  a.e. @
4
ﬁi Mote that the last condition holds automatically when F=§,
) '{l
; since in that case Qu-a.e. sample path is constant. Thus the last
‘33 assertion of Theorem 2 follows from the above corollary.

:¥| Our final aim is to extend the conditional regeneracy relation ’
;, (2.5) of Theorem 3 from By to the entire B. We shall then employ .
o0 the notation
‘% Rr = P{Xce ., Tom},
N Hr £AX Xz
" Q' = JO Ff(dx) = R(Q 3 T‘x} ’

; where T is an arbitrary stopping time.
N
B
A

R
g

e!“

o
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THEOREM 4. Let the o-field 7J'cJ be such that 7'v o(7,)= 7

a.e. QP. Then

ple s Xe |E, x‘l7'1 = QPT -}Wo,j'lvef»x a.s. on {X_eB}, (2.8)

for every stopping time 7. If J' is further countably generated,

then o "I+ T,,7'] can be chosen to be independent of T. The above
: : -0 -]ﬂ"r
statements remain true with 7' replaced by J =o’(9Z 7).

We do not know whether a.s. conditional regeneracy can be
proved here, as in case of Theorem 3. Other difficulties encountered
in Theorem 4 are the possible dependence on 7' of the conditional
transition kernel in (2.8), and further the possible non-existence
of a minimal conditioning o-field J'. The complexity of the general
case is illustrated by Fxample 1 in Section 8.

We proceed to make some general remarks. First of all, it is
easy to check that the proofs below for continuous time carry over
with obvious changes to the discrete time case. Alternatively, we may
derive the results for discrete time from those in the continuous
case by an embedding argument, where we let the successive
transitions between states of the discrete time process occur at
times given by a homogeneous Poisson process. Note, however, that
some technical simplifications are possible when time is discrete.
In particular, B_ and B_ will automatically become Borel sets, so
there is no need to introduce the auxiliary set Bé. Furthermore,
the statement of Theorem 4 may now be strenagtheneed to conditional
regeneracy, in the sense discussed above. Apart from this, the
two cases are completely analogous. For the sake of simplicity,
we shall therefore present the main example of Section 8 in a
discrete time version.

For a second remark, it is seen from (2.1) that condition (H)

holds a.s. on {XTeB} for a given stopping time T, iff

. r‘!’ A x'"\"'\
¢ h ~ ,

v < 4 *-. x-.‘:-‘- -.\'-'- o
YA m 3 :-:x.-,‘.“&* e T s b i
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10
X‘!"
s Xe . = EQ {w: we-, woeB}
P&, Xe-, X_€B} {w: , WoeB}.
Combining this with Theorem 2, we may conclude that the process
X is strong Markov, iff
. Xr
P{e_eXe-} = E Q
for every finite stopping time T. The latter condition may be
easier to verify in specific situations.
For a final remark, note that the local homogeneity of [5] was .
defined without reference to any specific kernel. In the same vein,
one may try to replace H(F,B) by a weaker condition H'(F,B), stating
that X is recurrent in F and satisfies
r '-‘ = . -
PLeU«Xt {Xoﬁdxj P[Qroxe !chdx], XecB a.e. dexpr,
for every pair of stopping times o and T, such that XO,XTeF a.s.
(Here Hg e denotes the largest measure dominated by both Po and p_.)
In the special case when F=S, we have the followinag analog of

Theorem 2:

THEOREM 2'. Condition H'(S,B) implies that (CI) holds a.s. on

{XTeB} for every stopping time 7.

To prove this, one needs to go through the proofs of Theorem 2
and of the first half of Theorem 1, to make sure that the stopping
times recuired to prove the assertions for a fixed T may be
(randomly) selected from some countable family {tjj. One may then
construct a kernel Q such that (H) holds a.s. in B for each T.,
and then proceed as before. The details of the argument are omitted
here.

In the same way, one may prove an analog of Theorem 2 for
arbitrary F, though the definition of Br will now depend on <, in
general. As for the last two main results, a stumbling block seems
to be the second half of Theorem 1, whose proof uses stopping times
depending in a :on-constructive manner on the kernel Q. We do not
know how to get around this difficulty.
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Our plan is to prove (2.2), first for

stopping times 7 with X €F a.s. and then in general. We shall next

discuss the existence of Bé, and prove from (2.2) that the two sets
in (2.3) are indistinguishable. From this the Corollary will follow

easily.

PROOF CF (2.2). Fix an arbitrary stopping time T with X .€F a.s.

Our first aim is to prove that

.{XfeBs} c {eto xeA} c;{X“_(-B\Br} a.s. (3.1)

To see this, conclude from (H) on {XteB} and from the definitions

of Br and Bs that

X X, X
P{e,+Xea, X eB } = E[0 “A; X eB.] = E[0 "A; 0 "a=0]

and

Xf c XT c XT
pie_exgn, x €8} = E[Q A%; X, €B_] = efo "a% o "a=1] =
The a.s. inclusions in (3.1) follow immediately from these relations
and from the definition of A.
Suvpose that we can prove the reverse relation
{x,cens}g{etoxeA} a.s. (3.2) j

Using (H), (2.1) and the definitions of A and Bs’ we then obtain

X X X
Efo "a; 0 “a<1] = [0 A X _€B\B]

P{ 6 ¢ XeA, XréB\Bs}

< p{xreBs, X €B\B_] =
Xe Xp
which shows that 0 "A=0 a.s. on {Q A<l}. By the definitions of

Br and Bs' we get

{XTGB\BS} C {X,r(-Br} a.s.,
or for the corresponding differences from {XféB},
[x,€Bg} D {X,€B\B }  a.s.
Thus the three events in (3.1) are a.s. egual, and (2.2) follows.
To complete the proof of (2.2) when X, €F a.s., it remains to
prove (3.2). Let us denote the metric in S by P' and fix an

arbitrary €>0. We shall first need to show that

L N v n *-\.ﬁ J.*pﬁ- » AT ‘.) ¥ -.~-.¢ AT AT .)‘__,~~J_-q - e -._..,.: -:""f"
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W Pie, - XA, X €B, sup{e(xt,xt); te[7,0], xteF}<J}<£, (3.3)
, for sufficiently small constants d>0 and large stopping times

o>T with X €F a.s. To this aim, note that

A - - > b,

4 sup{@(Xp,X,); t>7T, X, €F} >0 on fe o x¢a, x e8]

X by the definition of A, and conclude that

P{etafo, X_€B, supS?(Xr,Xt); te [T,Tvs], X €F}<d} ce

é for all sufficiently large s>»0 and small d>0. Formula (3.3) follows
% from this if we replace s by the stopping time d=inf{tztvs: XteF},

) and it remains to verify that X,SF a.s. But this is obvious by the

? recurrence of F and the facts that F is closed while X is right-

;s continuous.

2 Returning to the proof of (3.2), we shall introduce a countable
g collection of auxiliary stopping times Tj’ as follows. First we

partition B into countably many disjoint Borel sets B. with

diameters !BiFZJ, which is possible by the separability of S. We

: then define, for every index j, an associated stopping time
D

K>, ; T 7.

9 - . {mf{te[ 161; P (Xp,X,)>d, X €F} when X.&Bs,
- J T otherwise.

(Here and below, the infimum of an empty subset of [T,cj is taken

b to be o.) Note that X ¢F a.s. Since ,Bj}<c7 while X is right-

M j

. continuous, it is easy to check that

i nst C froeny, sunfp(x ) celn,a), xerfed) G
s: From the definitions of Tj and A, we further get the relations

F e, xer} ¢ {8, *XeAl a.s., (3.5)

: {GT°X€A, X.€85} < [X, .-x =Xg} a.s. (3.6)

4‘:

1

>
-

Applying (H) to the stopping times Tj and using formulas

bl

RS (3.3)-(3.6), we obtain
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Xr o . Xz o
E[o "AS; GreXeA] = jEE[Q AS; ©_eXeA, xTij]

Xz
JaC. = I3 |
< jz e[c 7a%; ijij] gp{etj X€A, thijs‘
< § P{O,* X¢R, X €By, supfp (X ,X.); te[r,0], X eF}<d}

P{O.cXfA, X &B, sup{p(X.,X,); te[T,0], X €F}c5} < €.
Since & was arbitrary, the left-hand side must be zero, so we get
. Xr o
{oroxea} c fo "a°=0f = {x.€B 1 a.s.,
which is relation (3.2). This completes the proof of (2.2) under
the condition X,eF a.s.

To extend (2.2) to arbitrary stopping times, let us first
assume that T is a.s. finite. Then (2.2) applies to the stopping
time o=inf{t2t: XteF} since Xch a.s., and it will then follow
for T if we intersect by {XteF}={T=c}. If T is allowed to be
infinite, we may apply (2.4) to the truncated stopping time Tan
and then intersect by {T<n}={T=TAn} to obtain
{6,c XeA, T<n} = {X,€B_, T<n} = {X,&B\B , T<nl  a.s.

From this we obtain (2.2) by letting n-»e. a

We proceed to prove the second statement of Theorem 1. Since
this part will not be needed for Theorem 2, the reader may skip
the proof for the moment, and return to it in connection with
Theorem 3.

As a first step, we shall prove the existence of a Borel set

Béc:Bs, such that (2.2) remains true with BS replaced by Bé, i.e.

such that
{6I~XEA} = {XTeBé} a.s. (3.7)

for every stopping time T.

PROOF OF EXISTENCE OF Bé. Qur proof will make use of the

measure P introduced in (2.4). However, that definition uses ]

|
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the set Bé, so we shall need a direct way of construction. For
each neN we then introduce the stopping time Tn=inf{tin: X, &F],

and define a measure Pn on S§ by

PnC = P{e_c_nv‘XéA, xtnec}, ce I. (3.8)

The sequence {Pn} is increasing and bounded, since the events on
the right of (3.8) are increasing in n, by the definition of A and
the recurrence of F. The measure p may now be defined by

pC = sup p C, ce’.
n

Let us now consider an arbitrary stopping time T, and conclude

as above that, for all neN and Ce F,

{eT¢XéA, xffc,'zin} c;{QT;'XeA, thec} a.s.
Hence

p{e_sXeA, X €C, T<n} ¢ PrC < pC-
Letting n-» o and using (2.2), we get
P{X,eB N C} = P{6,+XeR, X eC} ¢ pC. (3.9)
Since Bsef'*, there exists some Borel set BL<CB_ satisfying
p(B,\BZ)=0. Applying (3.9) with c=Bé°, we obtain
' "y =
P{xfeBs\Bs} < pBg\Bg) 0,

and (3.7) follows by combination with (2.2). a

To complete the proof of Theorem 1, we have to strengthen (3.7)

by proving that the two random sets

M; = {t>0: @, XeA}, M, = {t>0: X, €B’ 1

are indistinguishable. If M] were known at the outset to be optional,

then this would follow directly from the optional section theorem.

But the optionality of Ml is in fact a rather surprising conseauence

of our theorem.

PROOF OF (2.3)., Write Dl and D2 for the debuts of the two sets

ML and MZ' We shall first show that M1 and M2 are indistinguishable

within the random interval (Dl,w). Let us then fix an arbitrary

Co o e
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number r»C, and introduce the stopping time T=inf{tir: XteF}. By
the definition of A, we have

T= inf{tzr: 6,¢XeAl on {Dl<r}.
Since the right-continuity of X implies that Ml is right-closed,
(for a detailed arqgument, see the proof of the Corollary below),
we may conclude that ©.*Xe€A on {Dl<r}. But then (3.7) yields
Xq€B! a.s. on {D1<r}, and it follows by the definition of A that
Ml and M, are indistinguishable in the random interval [T,uox{chr}.
Since both sets vanish in [r,r) by the definition of T, they must
in fact agree a.s. in [r,w)x{Dlsr}. Hence they agree a.s. in the

countable union
U ([r,= x {p;er}) = (D,,=),
r&Q+

as asserted.

To extend this result to [Dl,m), note that D,€M;vim}, since M,

is right-closed. Using the definition of A, we obtain

Xt = XDl, teMl N (Dl,ao) ’

and since Ml and M2 agree a.s. on (Dl,w), we may conclude that

X, €B. a.s. on {leﬁ(Dl,uﬂfﬂ}.

1
But here the set on the right is equivalent to {D1<00}, by the

recurrence of F, and it follows that D16M2°{“4 a.s. Thus M1 and M2

are indeed indistinguishable on [Dlmo).

It remains to prove that Dé?Dl a.s. To this aim, let
Mg = Myn [D,,D+8), £>0,

and note that Mg is optional for each &. The optional section theorem
(cf. [4]) then applies and yields the existence, for each 3>0, of a
stopping time T satisfying
(71 < M, P{T=2, D,<m:}<d.
By (3.7) and the definition of M¢, we get a.s.
{T<} = {X.€B., T<D,+¢} = {e;eXeA, T<D,+e}c {D;<D,+E< w0},

Bab Aty .'»‘Z\'E-{\\'*'I:‘}\;a
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2 and hence

) ’ ,

o PiD,<®} < P{T< o} +5 < P{Dj<D,+E<w} + §.
i Since J was arbitrary, it follows that

{D2< %} c {D;<D,+<} a.s.,

and since even £ was arbitrary, we get D,<D, a.s. on {D2<aﬂ.. It

N remains to notice that D;¢D, is trivially true on {D2=ug-. a

R :
ﬁ| PROOF OF THE COROLLARY. The set M is optional, since X is

¥

§ right-continuous while Bé is Borel. The last assertion follows

ob

immediately from (2.2) and (2.3). It remains to prove that M is

a.s. right-closed and either empty or unbounded. By (2.3), it is

i equivalent to prove these assertions for the set M'={t:0; et~XeA}.

Y

' . .
if Let us then fix an wecy, and let tl,tz,...eM'=M'(u) with tn{.t.

5 Then X, =Xt =...=Xt by the definition of A and the right-continuity

1 1 2

j; of X, and this is the only state in F which is visited after t.

$y¥

e Thus ©, ¢ XeA, so te€M'. This proves that M' is right-closed.
iﬁ Let us next fix an wéfl, such that M'#@ while F is recurrent. )
: 11
;ﬁ If toeM', then xt €B, and this is the only state in F visited
4 0
47

;' after to. Thus Xt must be visited again for arbitrarily large t,

p 0

§
{ and any such t lies in M' by definition. This proves that M' is

o

o
K unbounded. a

B
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4. Proof_of Theorem 2. Here we shall first prove the strong

Markov property (SM) in B+ when F is an arbitrary closed subset
of 8. Ps before, it will then be useful to consider the case of
stopping times T with XteF a.s., before we turn to the general
case. Next we shall assume that F=S, and prove in this case that
(sM) remains true in B,. In view of Theorem 1, this will yield

the desired extension to B.

PROOF QOF (SM) IN Br' Assume first that T is a stopping time

with X,.€F a.s. It is required to show that

X
ple_<xe.; ] = E[o ' C] (4.1)

for any set Ce¢ ¥ f\{X €B } For convenience, we shall prove instead
that (4.1) holds for any Cef% with
{x.¢B\B_} Cc C C {X_eB}. (4.2)
This will prove the original statement, since any set CeE;(\{xreBr}
may be written as a difference
C = (Cuf{x.eB\B_}) \{X.&B\B }
between sets in the latter class.

As in the preceding proof, we shall apply condition (H) to a
sequence of auxiliary stopping times 1%. As before, we fix an
arbitrary £€>0, and choose d>0 and o>T such that (3.3) is fulfilled.
We shall also need a countable partition of B into disjoint Borel
sets Bj with }Bj]<é: The stopping times required in the present
proof are then given by

. {inf{te [7,0]: ((X_,X,)>d X, €F} on ccn{xtesj},

J T on C(J{XtﬁBj}.
Recalling the definition of o and the convention about empty sets,
it is seen that ereF a.s., so (H) applies to each 1j' Note also
that, instead of (3.4),

‘ VAT L SRR R AR T
R R I RN L TR T R A R T
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{erij}\c C {x_eB, sup{F(XT,Xt); te[7,0], x.eF}<I} (4.3)

We may now conclude from (H), (3.3), (4.2) (4.3) and the
definition of 13 that

’p[eru X€-; C_]—E[QXT; c]' < JZ 'E[l{er=xe~}-gx7; X €By, c]'

Lleliforrnet-o Y x ey d

=2 |e[1fe, axe}of';x €B;, C ]{<Zp[x €B, c¢]
] Y T3 ™3

< 2 P{O *XfA, X_ €By, sup{p(X.,X.); te[T,0], X €F] <5}
3

P{e cX¢n, X eB, sup{p(X;,X.); te[T,0], X, €F}<3}<E.
Since € was arbitrary, the difference on the left must vanish, as

asserted in (4.1). This proves (SM) in Br for stopping times T with

XTeF a.s.

We next consider an arbitrary finite stopping time T, and a
set Cettf\{XTeBr}. Putting o=inf {t>7: X, €F} as before, we get
XoeF a.s., and it is further seen that

C ¢ ?g_r\{1=oz xchr}. (4.4)
Thus (4.1) holds with o in place of 7, and we get in view of (4.4)
Xd’ XT

Ple+Xe.; ] = mle_exe-; c] = E[o % ¢] = E[0 " ],

as desired.

For general T, let again CG?:; r\{xteBr}, anéd note that

C'\{'r_c_n} = CNn {T=TAan} € ?',‘_A

(cf. [4]), and that moreover
cn{ten} o {X B, Ten} ¢ {X . €B.}
Hence (4.1) applies with 7 and C replaced by TAn and Cn{T<n}, and

we get

X
Ple.cxe, Ten; ] = Plo, ¢ Xer, Ten; C] oo

efo ©°": 7en, ]

X
e[o '; Ten, c].
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Since T is finite on C, we obtain (4.1) from this by letting n—»s.

Our proof is then complete. g

PROOF OF (SM) IX Bs WHFM F=8. If F=g8, then

A = {w: W, =W cB} 1w— : X€B},

t- X

where cx(t)ix, so by Theorem 1 we get for every stopping time T

e-:X =c a.s. on {XTGSS}.

X-
Hence, a.s. on {XTGBS},
Ple <Xxe (Fr] = Ploy € [F] = Loy €} =P[O sXe: |Xo],
‘T e

as desired. a
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some auxiliary results, needed for the proofs of the last two
main theorems. We shall also introduce the stopping times Gb,tl,...
and the associated excursions Yl’YZ""’ which will later play a
basic role. The only result in this section which may be of some
independent interest is Lemma 5.6 on exchangeable sequences.

Our first aim is to restate the homogeneity condition (H) for

visits to Bé in terms of the mixture QP. In the proof, we shall make

use of the optional set M={t30; Xt&Bé}, introduced in Section 2.

LEMMA 5.1. Let T be a stopping time satisfyingrxTeBé a.s.

on {§<ao}. Then

po_: Xe-, §<w} = o, (5.1)

and

olesxe-|x17] = oP[-|7]eX a.s. on {tew}- (5.2)

PRCOF. To prove (5.1), let us introduce the auxiliary stopping

times
T, = inf{t> Tan: XteF}, neN,

and note that X_€F a.s. for each n. FKence (H) applies to each T,

n
and we cet

Xt
[ . 'l = T n, '
p{e_cXxe-, X eBl]=E[0 " x_eBl]. (5.3)
n n n
1 ' ' . — -~
MNow both X?eBs and Xt,neBs imply §<# and on the same set Ty~ 7T for

all sufficiently large n. Letting n->e in (5.3), we thus obtain

]

P{0,*X¢', f<m} = P{o_+Xe-, xresé}

X : (5.4)
E[0 '; X €Bl] = gmj

it

Mext conclude from (2.3) that 6_¢XecA a.s. on {§<x}, and that
moreover §=inf{t20: etoXeA} a.s. Since the latter set is right-
closed, it follows that even 6,¢XeA a.s. on {;<x0. Using the

$
definition of A we thus obtain X =X, a.s. on {§<~}, and so, by the

20
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'
Ky C
K definition of u,
fi Xz X¢ X B
2 Elo 7 g<=] = B[ °; ¢es] = [o¥p(ax) = oF.
Combining this with (5.4) yields (5.1).
o -
ig To prove (5.2), note that {§<w}a.s. equals {M unbounded}ex 17.
iﬁ ' For any T€J with {XeI}c {M unboundcd}, we get by (5.1)
18
3 o3 i = » = ’ = P L] 3 p
y P{O, X&', XeI} P{ef»xe NI, {<oo} oP(-n1) fIQ [-]7])a0
i - J’QP[.m arx™t = [ ol 7). X ap,
u I {xe1}
K as desired. a
% We proceed to discuss some properties of the randor set M,
a4
ﬁ Recall from the Corollary to Theorem 1 that M is a.s. right-closed
#'}
e and either empty or unbounded. We shall also need some information
‘-"
}: about the gaps of M. By a gap we mean an open interval (a,b), such
s,
); that (a,b) " M=@ while a,béM, where M denotes the closure of M. Note
) that the gaps of M are disjoint.
b
LEMMA 5.2. For any fixed h»0, the random set M has a.s. either
none or infinitely many gaps s>h.
¥ DPOOF. Applying Lemma 5.1 to the stopping times.
o T, = inf{t>n: teM}, nez,,
‘s we get

P{M has gaps >hj} P{M has gaps >h in [n,no)}

N {M has gaps >h in [npe)}
n=0

P{M has infinitely many gaps >h}.

d:“.“; !vI.l- ;-

3
n

E Since the event on the right implies the one on the left, the two
R must be a.s. equal. Thus the possibility of finitely many gaps >h
at
4!

is a.s. excluded. o
i
Ky Combining this result with Theorem 1, it is seen that with
L}
»
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2y probability one either M=[C,w) for some (e[o,ao], or M has infinitely

?;- many gaps greater than some h>0. It is convenient to state a

corresponding fact in terms of suitable invariant sets in D. Let

-
-

us then introduce the set-valued function

23
ta
DU 3

Py

rx
.

m(w) = {t>0: w. €Bl},  weD,

]

%

and define the 7f-sets

- - Uy - ’
0 Iy = tbo weD: Mo w= [t,oo)} ,
e,
P
Ay | — ] o
- I N XWED' me®, w has gaps >h}, h >0,
B, t=>0
o ' h >0 1 T
I, = Ioth, >0; Ty = hgo-h.
; In this notation, we have with probability one either M=g or X€I, .
0 . .
oy An important role in the sequel will be played by the stopping
times TO'Tl"" and processes Yl'YZ""' defined for fixed h >0 by
A2
19 T =C. T = infit>T .
ﬂ9 Ty ;. C, = inf{t>T _,+h: teM}, neN, ‘
)
K (X(t+T__.) 0ct< T
ne - ’ ety
A Y (t) = i n-1 n nex.
Ny " al t>7 N
o o
::"l Note that the sample paths of Yl'YZ”" lie in the space Da=D(R ¢Sy,
;‘
'& where S, is obtained from S by attachinc 2 as an isolated point.
nh P b4 C P
§§ Let us write Y for the random element (Yl’Yz"") of D:f. In
the latter space, the discrete shift operators en are given by
n

"\ e(ylryzr---)=(y21Y3I---)r 9n=e
~N We shall need to construct universally measurable mappings ¢ and P

b . . , . .

\3 satisfying ~f°X=Y and +‘vY=6¢°X, and commuting in a suitable sense R
&'\‘ with the shift operators on D and D}.
‘ Let us then define the functions tgrtys... and f1:¢p+--- on D, )
:3*. in the same way as ’L’O,T y+-+. and ¥y/¥5,... were defined in terms of
X. More precisely, let
‘ ty = 2z = inf m, d = inf{s>h; sem},

< 2
3%

? tn = thop * d*6,  ,  neN, (5.5)
% - n-1

4
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b = o = d (% 5 ‘
n et kt $1°et ’ neN, (5.6)
n-1 n n-1

and pUt'f=(Ti'Tz"")' All these functions are clearly $*-measurable.
To construct a marping in the opposite direction, let

d’' (w)

inf{tzo: w, =2}, weD,,

and define for y (yl,yz,...)eD?

r {y) = d'(yl) + ... 4 d'(yn), nez

+l
fy (t-r .), r .<ter_, neN,
“?(y))t - { n n-1 n-1 n
2, t>sup r,-

LEMMA 5.3, The above functions are universally measurable and

satisfy
76, = en Yo nez , (5.7)
n
‘4 en:% = (er *{)vY = et ’ neZ+. (5.8)
n n
Moreover, there exist universally measurable functions nt,né: Iﬁ—a-z+,
t>0, such that
&, ‘¢ = ené:Yoet on I, t>0. (5.9)
PROOF. For every t>0 we have
v = i Sh: Sems = i [ . .
t + d-6, = t + infisyh: sem:0, | = infis+trhet: s+tem}
= inf{s>h+t: s€m},

so

Z°9t+d° = 0, t>0.

t

Putting t=tn_l, we get in particular

z.8, =0 on the set {tn<:w}.

n

More generally, it is seen by induction that

tkcetn + tn = Yyun’ k,nez . (5.10)

Indeed, assuming (5.10) to be true with k-1 instead of k, we get

by (5.5)
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t, o +t_ = (t,_, + dre )e® + t
k t n k-1 te1 t. n
=t .8 + t + d.6
k=1t n te 1 8 +t
n
t - + d‘e = t ’
k=1+n ty-14n k+n
as desired. Combining (5.10) with (5.6) yields ,
? ¢ e = q) - . -} = .: 8 = G + 0 = ,
R f1°%, .. o *tn 1, ;7 T '
and (5.7) follows.
To prove (5.8), note that
' o =
tn—l + d Tn tn’ neN,
and conclude by summation that
re°¢ = tn - Z On {z<oo}, nez+. (5.11)
Assuming that z<w and t+ze[tn_1,tn), we get
Pergle = Pplt-Tp_19¢) = §plt+z-t ) = wit+z) = 6 (t),
SO
+'v%~= e, (5.12)

at least when z<%, But then (5.12) must be generally true, since
it reduces to a triviality when z=w . Combining (5.12) with (5.7)

and (5.10) yields

+” S ¢ =‘P;?cet =90, %% T8 +t_ T O v
n tn n tn n n

which proves the equality between the extreme members of (5.8). On

the other hand, we may use (5.11) and (5.12) to obtain for z =< o

(& cP)o =0 /o‘:g_oe:e'

r, * ? rnc?‘v ? tn z "z tn

which again extends immediately to arbitrary z. Thus the right
equality in (5.8) is also true, and so the proof of (5.8) is

complete.

To prove (5.9) for suitable n, and n!, let us first assume that

t t’
wtlg, and define

T(w) = inf{szO: [s,s+h]Aam(w)#8},

ALY -._
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¥,
{4
o = 3 (e o
i:‘ nt(w) = infinez : t > Tcet+t}, t>0.
KN *
::: Note that T and n, are finite and © -measurable functions of w on I).
'
4
;‘ We shall show that
sk = EF t) o 4k B Kk€Z,, t20. (5.13)
t 0 't

ST To see this, conclude from the definitions that
i} tnt = inf{ser: s >Tc9t+t}, t>0.
K Hence
A}
) . _ s ‘e m
p'.. tn0°et et = 1nfis~;m.et, s > ,_oet}
L] .

= infislo: s+tem, s+t> Tc6t+t}
K
) e iagf ] _ - _
u'.: = 1nf1uem. u>T«-et+t} t tnt t,
1: which vroves (5.13) for k=0. Corbining this special case with (5.10),
L)
{ we obtain more generally
k.
0
i t“t+k = tnt + tk"etn =t + t“0°et’9 + t, 0 B g

t Mo "¢
=t + t 0, + t. e ce® =t + t Q9 ,
. nGeo, t kK"t g t nye®, +k
: 0 't
» as desired. Using (5.13), we get for ke&N
A
L) ce®, =€ ((r+t YAt )
W e -
, Frengee %t = % k+nge @, -1" " Tk+n o0
1‘"
W = w((+t YAt ) =
1, - ’
# k+nt 1 k+nt Tk+nt
L/ so (5.9) holds with
¥
. nt':(w) = no(etw) ' t>0.
¢
&
, It remains to consider the case when wél 0 Let us then cdefine
k )
P . :
1 T = i b} . Jal = {
s T' (W) 1nfls_30. wseu, esw cwsg,
" v = inflkegz : T
; M(w) 1nf{ke?+ tk(w) > 7 (w)},
[ *
3 and note that M is finite and Q -measurable. Moreover, W Wy for
by
b i =
s_;:tN while (etw)s Woo for s_>_tN.eto et, so we get

! M) — > . Ny
\ Prak T (fr\7cet+k°9t' ker, t>0.
l
L
4 Thus (5.9) holds in this case with :
; |
? 2w Y '\- \.;
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i"
i nt(w) = M(w), né(w) = H(etw), t>0. a
e
]
f& It is convenient to restate (5.7) and (5.8) in terms of X and Y:
& COROLLARY 5.4. For each néz, , we have identically
; tOr each
H
¥ O, °X = 8 Y, (5.14) ,
d n n
¥ )

} 8, cY = et o X. (5.15)
X n .
% Our next aim is to relate the shift invariant o-fields in D
D
g and D: through the mapping ?. In D;, the invariant o-field is
a given by
4 . * -
A 7= {38 7155},
‘.
1
%' To stress the dependence of ?,Y,... on h, we shall sometimes write
D)
&

(fh,Yh,...

: LEMMA 5.5. For each h >0 we have
A -
3 Ta1, <t (5.16)
& 0 h ¢
o Moreover, there exists some set Jhe;, such that .
iod g ————— e
LY
4 -l
> - = ~
. PROOF. Let IeiTﬂIo be arbitrary, and put
" - A U e \fﬂ 1;.
‘Q m=1 n=m
a" Then clearly JEJ. Using Lemma 5,3, the invariance of I and the
D)
Q» finiteness of tl'tz"" on IO’ it is further seen that
¢
) TP S S . - : =
[fee 97T} = {prapyer) = o, €1} -
." -
3 so
W o = = -1 -1
. {yeat = N Udgee "¢ 1] = 1.
= m=1 n=m -
|}
Eq This proves (5.16).
L From (5.16) it follows in particular that Ih=qr1Jh for some
LA
N Jhe;. To prove (5.17), it remains to show that
‘% -1
Wil (g ng Y In1
3. 9 ? h h 1
Wi Let us then consider an arbitrary set JéaWth, and put I=y “J. Then
&

" ar U

"o

h . y .
. l. ‘\.:::uq. ’ " Al .‘, "l,&’.‘l‘.&*\ .‘.{.‘ ) ,' ‘ “1
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Ic:Ih, so we need only prove that I€7. Using Lemma 5.3 and the

invariance of J, we get for any t>0 and for n_ and n; as in (5.9)

t t
e;lx = e';lcf'la = {yee, eI} = {enéa?oetea} = {entufe.:r} {?cl-J}
¢ J=1,

as desired.
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We conclude this section with a general result about conditionally

i.i.d. random sequences in an arbitrary state space S. Let us then
write © for the shift operator on s® and J for the associated

o-field of shift invariant measurable sets in S%.

LEMMA 5.6. Let §=(£0,El,...) be a random sequence such that

©:§ is conditionally i.i.d. and independent of §0' given some o-

fieldtﬁ. Then this remains true with 9 replaced by §_lC, iff

o7 L el Lo -1

Note that this statement contains a number of known results in

exchangeability theory (cf. Aldous [11).

PROCF . By hyrothesis,

0) a.s. P& . (5.18)

plecge-[&,9] = (P[§e |gh¥= v=. (5.19)

Hence, by the law of large numbers,

n
lim & 2 1{§.¢B} = vB  a.s.,
n .= ’7
wo j=1 -

so o(v)c £ te™ 17 a.s., and therefore

Ple-ge-ig,, § 67N T] = (plie- g, ¢TI

it

(P( e [§7671T)™.
Thus (5.19) remains true foq'g=8—lC, with any o-field € satisfying
(5.18).

Suppose conversely that (5.19) holds with 9=§'_l€ for some o-

ficld €. By Kolmegorov's 0-] law, we obtain for any leJ

. . YR Y g o~ -~ e i o s e e
Y -’. Lo, / ./- (_L."“ -(\_- 1' i $<..‘l¢'.\ "\"'.‘\._ T " "\ -,, 1.‘\ < R SN SRy #
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2 or 1 a.s.,

]

plecger! £ ¢] = (g e [E )T
and it fo iows easily that, a.s.,
- L =1 -
i@ zell = Plegel & (]=1" < ¢ L.
Thus E-le-ljcs—lﬁ: a.s., so e l7ce a.s. I‘é,'-l.
To derive the upper bound in (5.18), note that (5.19) remains
true with?:o’(g‘o)v 5-16’. Aprlyinc the law of large nurmbers to
successive blocks of n components, we get a.s.
- -1. -1_-1
DL(gl:---pfn)é'lfrf C] =p[(§lr--'l§n)e’f'gol f e 7]0
and hence also
P[€e, (§ £re-|¢, & te]=P[5 e, (£ £ )€ |5, £ 07 1T]
(| 1’7°°°'°n 0’ 0o~ ' 17°°°'%n 0’ :
By a monotone class argument, this extends to
- -1_-1
rl§e-|£,,§¢] = p[ge- 1§, § 1o 1T],
and we get in particular, for any Ce§g,
‘ -1 -} -1 -1 -1
lifec} = p[§ec|§,,§ €] = p[fec|£,. % Yo 7] € s(§)v £ 70T,
Thus 5-15\,0(50)v 5—19_17 a.s., sc Cczc%ﬁo)v 8—17 a.s. PE—]. a

ay
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6. Proof of Theorem 3. The main idea of the proof is to show

by means of Theorem 2.1 in [5) that the sequence of excursions
Yl’YZ"" is exchangeable and hence conditionally i.i.d. This
yields the conditional form of the strong Markov property at the
random times Tb, 170 Since an arbitrary stopping time in M can be
approximated by times Tn’ the general result follows from this by a
continuity argument. Similar arguments were used on several occations
already in [5].

We proceed to the detailed argument, and begin with (2.5).

Here it will be convenient to consider a special case first.

PROOF OF (2.5) WHEN XéIh A.S. Let q be the discrete filtration
associated with the stopping times ‘L’o,‘i'l,... above, i.e. 9n=?; for
nez+, and note that Y is adapted to 9. If o is a finite q stopping

. time, then ‘g 18 an * stopping time, and moreover XT eB; a.s. since

c
M is right-closed. Hence
p.e_¢-}=
Ty
by Lemma 5.1, so by Corollary 5.4 we have
: ! = r * uur-l
PegYe = pﬁoeTo-xt f=0qg "

indevendently of . We may then conclude from Theorem 2.1 in [5]
that Y is exchangeable, and that indeed

plo sve |G ,v]=v®=rlve-|v] a.s.
for some random vrrobabilitvy measure V¥ onDa.This extends bv a
standard argument to

plejve. G V] = rlve |v] a.s.,
for finite g stopping times o. Noting that

o(v) = Y_lJ = x'lj a.s.

by Lemmas 5.5 and 5.6, and using Lemma 5.1 and Corollary 5.4, we

hence obtain

k »

Ly “l"‘n',‘i
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PO, < Xe- [x'ljj = Q¥ [ |7]x.

This proves (2.5) for stopping times T of the form 7

gy
==
[

\'fq‘-’l o..
;?f To extend this to arbitrary stopping times T with X_eB' a.s.,
4
e put .

e Ty, = inf{7 >7: nez 1}, )
33 and note that Th is a.s. of the form T& for some 9’stoppinq time o.

S% Thus (2.5) holds with Th in place of T, and since '1}27;h, we get

e P[et_hr xe . Z, x'7) = oP[.|7)x  a.s.

?f, This clearly remains true for every sufficiently small h>0.

ﬁ? Yow Ty —»7T a.s. as h—»0 by construction, so we get

X }

;" P[x(-rh+t) — X(T+t)]) %, x'lJ] =1 a.s., t0,

%h by the right-continuity of paths. Hence the finite-dimensional

%% distributions of e <X converge weakly to those of e ¢X, a.s. with i
W, respect to P[. F,, X~ Jj On the other hand, these distributions

éﬁ‘ are a.s. given by Op[ 7)o X. Thus both sides of (2.5) have the

,§$ same finite-dimensional distributions, and since the latter

23 determine the whole distribution, (2.5) is generally true.

ﬁg\ Let us next consider the case when T is an arbitrary finite

éé stopping time. We then define d=inf{t51: XteBé}, and note that o

o is a stooring time with xogaé a.s., since M is a.s. right-closed.

§§ Hence (2.5) holds with T remnlaced by o, and since 7&'W{G=T}=

‘$ %JW{U=T}, the original relation must be a.s. true on {o=7}. )
i

remains to notice that {xreBé}<:{d=f} by the definition of o.

!

,‘._.V_A.-‘
-H.-g'i'.
e

"l‘ a“a

We finally assume that T is an arbitrary stopping time. Then

(2.5) holds with T rerlaced by TAn for anyv fixed ne€l, and since

" o,

f%ﬁnr\(1<n}- rr\»T<n} the oricinal relation is then a.s. true on

-}

EERE S %
g~ IR
Lo e

,X,eB;, "<nl. The assertion for T now follows by letting n-—sse. a

A e bR \ 3 «‘ .E‘ N X X7, R \ 3 “ N oA
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PROOF OF (2.5) 1IN THE GENERAL CASE. From the assertions in

Lemma 5.1, we get immediately the corresponding statements for
g c1ias - _ . u
the conditional probabilities P( ierh] and Qp[v]Ih]—Qp( " Ih)/Q I
provided that P{xelh}'>0. Proceeding as in the special case above,
it is then seen that
. -1 B .

plo-xe. [, X777, xer, ] = oF[.|7,1,]°X a.s. on {X €Bl, XeI,},
which is equivalent to (2.5) on the set {erh}. Since h is
arbitrary, this extends immediately to {XGIO}- It remains to

notice that {XTeBé}c:{XeIO} a.s., by Lemma 5.2. (8]

DROOF OF THE CONDITICNAL REGENERACY IN Bs' We shall prove the
stronger statement that, for almost every conditional distribution
P'=P[. }x 7,, there exists some probability measure Q' on D, such
that
. P'le.cXe[F.]=C' on {XTeBé}, a.s. p', (6.1)
for every stopping time T. By (2.5), this holds with Q'=QP[:/7J°X
for every fixed stopping time 7. The point is that the exceptional
P-null set where (6.1) may fail can be taken to be independent of 7.
To see this, note that (6.1) holds simultaneously for the
countable collection of stopping times To,kic and
T = inf{tzth_l'k+k'l

14

, teM}, n,keN,
outside a fixed P-null set. For any P' and 0' with this property,
we may now proceed as above to extend (6.1) in steps, first to

- stopping times of the form 1&;k with o random, then to stopping
times 7 with XTeBé a.s. P', next to all finite stopping times,

and finally to the general case. a

From (2.5) follows the same relation with X—Hf in place of

x”J, for arbitrary ¢ satisfying (2.7), and (2.6) then follows

by applying (2.5) to the stopping times T and §. To complete thc

L]

J
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\,
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E‘I?n
z;;'é proof of Theorem 3, it thus remains to show that (2.6) for all

N/
)
:ﬁ: stopping times T implies (2.7).
.'g}"
N
I PROOF OF (2.7) FROM (2.6). Fix h>0, define Y=(Y1,Y2,...) as

iy
%gé before, and put Y0=k§cx. From (2.6) it is seen that Yl'YZ"”
o . N
:;3,' are conditionally i.i.d. and independent of Y,, a.s. on {§ <o} and
tehy -

given the o-field X lc’v o'(x;.) . By Lemma 5.6, this implies

Ly -
ot -1, -1, -y iy }
o Y P <X ¢ o'(xg)c_Y gV o'(YO) a.s. on ¢ »}. (6.2)
P .
RN In particular we may take {=J, and then we get in conjunction
WYy

with Lemma 5.5 and Theorem 1

) -1 -1 -1, — -1 ’
.(‘ X Jcy ; CX “Jv o'(Xg) =X "J a.s. on {{cm}.
:S Thus Y—l;'=x-l7 a.s. on {¢<»}, and (2.7) follows by substituting
G - -

” x 1Y for v 1;,‘ in (6.2). 0
XN
P
'a: PROOF OF THE COROLLARY. From Theorems 2 and 3 it is seen that
? .
o X is regenerative in B iff
4 JCco(m)c Ivolk,) a.s. P{Xe-, §<m}. (6.3)
{ Now ,‘T'Z is clearly shift invariant on the set where ezeA while m is
" unbounded, and the latter set has full measure, since

)
o PleccXeA, M is unbounded} = P{§<xf,
:; by Theorem 1 and its corollary. Thus
L]

\
it o(r,)c T a.s. P{Xe:, $<n},
\ so (6.3) reduces to
]
:.' J= d(ﬂz) a.s. P{XG-, $<wmof . .
)

..Q.
:‘tf Using the definition of 7, we may rewrite this in the form
2 J=o(T) a.s. Pig,cXe-, §<wo} = qP. a -
: 0 ;
:j,_,
e
e
!‘;.‘

A
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7. _Proof of Theorem 4. Our plan is first to derive (2.8) from

e e e e B R P e B T e e e e e T S e e e
2 2+ L+ 2 34

the three preceding theorems. Our next step is to construct a T-
independent version of pr['inb,D“] from a product measurable
version of O'[';jﬂ], where the latter is known to exist when 7'
is countably generated. To prove the final assertion, we shall
show that J" is equivalent to some o-field satisfying the

. previous requirements, in the sense of yielding the same conditional

distributions in (2.8).

PROCE OF (2.8). Our first aim is teo prove that (2.8) holds
a.s. on {XTeBr} for any stopping time T. To see this, fix a stopping
time 7, let JeJ' and Cef*n B. be arbitrary, and conclude from the
invariance of I and the definitions of QPT and OPT[v[ﬂb,Cﬂ]that

P{eT~Xe-, Xel, XfeC}

: -1.,y _ Pr -1
PiO s Xe nIAT, c}-o (+nInT "C)
Pr

13
n

IQPT[- {7:0,7']1(1'\ nalc)do

E[QPT[‘{?O,’J'Jvefox; XeI, X eC].
Hence

ole,:xe-, xeI1|x.] = E[QPT[.- [Ty T']e ©,4X;: XeI)X ] a.s. on {X €B}.
Since (SM) holds in Br by Theorem 2, it follows that

plocexe-, XeI|%] = E[QP‘C[',WO,’J'_]vefoX; XeI|7.] a.s. on {X €B}.
Thus we get, a.s. on {xteBr},

. - 1 -
ploexe 1%, X717 =& 0 [T, 7] e x|Z, x717]

QPT[./?{O,:}"JG eroxl

as asserted.
. By Theorem 1 it remains to prove (2.8) a.s. on {X1GBS}, and
by Theorem 3 it then suffices to show that
Q}lf[-]ﬁo,t!']uefcx = oF[-]7]+% a.s. on {X.eB_}. (7.1)

e~ : - 8
To see this, note that xt-x$ a.s. on 1X1eBs}‘ Hence p<p on Bs'

242 {a
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and therefore 0 TiQp on WblBg. Thus we get, by the hypothesis on J'
PT VU — 1 ¥ ‘. Y Pt _1
] Q {’( “O' J'] = Q(x[- i WO'J'J = QA[.]‘JJ a.e. Q'}1 on ﬂ'o Bs'
and (7.1) follows by the definitions of 7 and Q ‘. 8

For the next step of our vroof, we shall need the following

standard result (cf. [4]):

: LEMMA 7.1. Let P° be a probability kernel fror a measurable

T

space (S,f) into some Polish space (T,7), and let 7' bhe a countably

it generated sub-o-field of 7. Then Ps[-krﬂ (t) has a regular and

#.7'-measurable version.

=

We may now rrove the second statement of the theorem.

B e a a-

PROCF OF THE T-INDEPENDFENCE. If J' is countably generated,

- -

then Lemma 7.1 yields the existence of a regular and product
measurable version of the conditional probabilities O'[.jjﬂ . .

Given any such version, we shall orove that

' B : v =

o [ 7.7 =0 [ [7] (v} a.e. @ 7, (7.2)
: for every stopring time T. Since the right-hand side is d(ﬂb)v 7' -
n

measurable, a T-independent version of O'T['ljﬂ may then be

defined bv the ecuality in (7.2).

P I

)

To prove (7.2) , note first that F(§f)=(E§)f for any random

measure § and measurable function £>0 on the same space. Using

Pe

this fact, aloncg with the definitions of © and Q'[-{j{] and

N

the normality of Q°, we get for arbitrary I€7' and Ce f

Pt -1 Xr -1 Xt .
Q (-f\IﬂTl’o C) F Q (.nI-s?«'o C) =E[Q (-nI);Xt(-C]

X
r[f oxr[. J717d0 ; X, eC]
1

R
-

§ dn W en A e

~ w X
E | o 20171 w1 (aw)

-1
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as desired,.

To nprove the last statement of the theorem, let us introduce the
space M(D,) of probability measures on D,, and let M be the o-field

in M(D,) generated by the mappings m—s mC, meM(D,), for arbitrary

CGQ,=£3sz}. We shall need another standard fact:

LEMMA 7.2. The o-field M in M(D,) is countably generated.

PROOF. Note that 93 is the Borel o-field in D, generated by the
Skorohod-Stone topology. Similarly, M is the Borel o-field in
M(D,) generated by the topology of weak convergence for probability
measures on D,. Since S, is Polish, so is D, and hence also M(D,). In

particular, M is then generated by any countable base in M(D,) .

PROOF CF THE LAST STATEMENT. Fix positive numbers hn.LO, and

write

J, = 1I H J = I_ NI . n=2,3,...,
1 hl n hn hn-l

where the sets Ih' h>0, are defined as in Section 5. Let vn be
the random probability measure ¥ of Section 6 corresponding to
h=hn, and conclude from the law of large numbers that Vn has a
Y;lg -measurable version. Since moreover Yglg = x17 on {xedq }
by Lemrma 5.5, there exists an J/M -measurable mapping m, Jn—+
M(D), such that V =m :X a.s. on {XeJ }. Let J' be the o-field
in D generated by the mappings my,Myye.e.

By construction we have 7' 7" and from Lemma 7.2 it
follows that /' is countably generated. By Lemma 5.6 it is further
seen that X 17'=x"17 on each set [Xed }, so we get
-1.

7' = X717 = X717 = (8 ex)TIT aus. on {em}, (7.3)

(QcoX) s
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‘: and hence J'=. a.e. QP. Thus J' fulfills the hypotheses of the

theorem, sOo (2.8) must hold with some T-independent version of

o Time ]
ﬁ To complete the rroof, it suffices to show that
; plo cxe - |%, x“lzr'] = ple o xe- |7, X7 a.s. '
i and 0. n
. Q'L'}ﬁb,Jj [ IW 7"] a.e. C " on ﬂgls, )
3 in the sense that any version on the right is also a version on
:‘ the left. Since 7" c 7', it is then enouch to show that
| X-17' = x7 g als. (7.4)
$ and By _1
: 7' =7J" a.e. Q on ﬂb S. (7.5)
]

Here (7.4) follows from (7.3) and from the fact that {({=w} is a.s.

ﬁ an atom of both o-fields. Given (7.4), we get as before

z‘ (Gto X)-]'?' = X-17' = x—lyll = (‘GT‘X) -17" a.s. on {T<~}’ ,
: which implies (7.5).

d . o ’)'. (‘- (' y « '., ..’ ! LR . ) A \\m‘ X
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b illustrate the results of Section 2 by a simple example, exhibiting
15 most of the features of the general case. Here we are choosing the
:ﬁ time scale to be discrete, for convenience, but it is easy to

&; construct an analogous example in continuous time, by letting the
%f ‘ transitions between states occur at times given by a homogeneous

r . Poisson process.

¢

i Example 1. Let S=i0,l,...,8}, and let (L consist of the

e following six "paths" from Z, to S:

é wﬁ=0171717..., u§=0383838..., u%=0555...,

,‘: w,=0272727..., w,=0484848..., w6=0666..,

%; Let * be the discrete o-field on £, and let fb, 1,... be the

g filtration generated by the identity map X=(X0,Xl,...) on {2,

Note that ::0={ﬂ,0.} while ?1= ?2=...=5"‘. On QL we introduce the
probability measure P, assigning the same probability 1/6 to all
paths.

Using the fact that stopping times with respect to {?;& are
either identically zero or strictly positive, one can easily show
that H(F,B) is true with F={0,5,6,7,8} and B={0,7,8}. Here QO=P,

while Q7 assigns probability 1/2 to each one of ©.«, and €,«.

21 2 2’
¥ and similarly for Q8. Thus Br={0} while Bs={7,8}, and it is
i; easily seen that X regenerates in Br but not in Bs‘ This illustrates
E; the statements of Theorems 1 and 2. ?
{' Turning to the statements of Theorem 3, note that ol gives
f; L mass 1/4 to each of the paths 92 1,...,92w2. Since these are
$; separated by invariant sets, it follows that QP["j](uﬁ) degenerates
0 at ezaﬁ for j=1,...,4. Since moreover x"17=F in the present case,
%; it is seen that P[:]X-lg](uj) degenerates at w for j=1,...,4.
;} Thus (2.5) holds as asserted. However, the two eguivalent conditions
t
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of the Corollary fail in the present case, since d(Xc)n{;<x} is
the o-field generated by the partition ({“i’“ﬁ}’ i“@’“ﬁ})' while
-1 .
X “JNn¢S<»} is the one generated by ({wqtreeer{mg)) -
Most interesting in the present example is perhaps to look at

the statements’of Theorem 4. Since S is finite, we can always choose

7

Poy Yo

AR ] = . - & .
L o T Tl =0 PLT T wy, wmep g, €598, )
\

s regardless of the nature of J'. In particular, (2.8) holds with

e

0 as above for J'=7, but also for 7' equal to, say,

Jj = 0(I13:I5) or T3 = 0(Iy4:T53),

gﬁ where Iij denotes the set of pvaths visiting the set {i,j} infinitely

:E often. For the latter, Q7[-}7[] and Qg[ofjf] are a.s. degenerate
,‘T as before, but QO[-jjé] is non-~-degenerate for j=1,2, and differs

?j for the two cases. In fact, it is easily verified that Qofnhyﬂi](wj)

E} =1/2 for i,je{1,3} or i,j€{2,4}, and similarly for 7} with 3 and 4 |
§l interchanged. Note also that both 7i and 75 are locally minimal,

:k in the sense that, whenever a og-field 7'c 75 is such that
‘:f T va(Ty))=T a.e. o", then .7'=73'. a.e. OF'. This illustrates the

ﬁ. non-uniqueness of kernel and non-existence of a minimal conditioning
“ﬁ o-field in the statement of Theorem 4. o

‘ e conclude this section by correcting an error in [5] related
k? to the present work. As part of Theorem 4.5 in [5], it was claimed

'i that a real valued, continuous, recurrent, and locally homogeneous ¢
i% process X on P+ is conditionally strong Markov, However, the proof

ri in [5] is false in general, unless we exclude the possibility of ’
g
;E paths with constant pieces. (Our mistake was to add up uncountably
3: many null-sets, corresponding to the possible states of constancy.)

Ef The following counterexample shows that the difficulties are

f§ intrinsic rather than merely technical.

§
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1 Example 2. Consider a Brownian motion B, and an independent

% homogeneous Poisson process with jumps at Tl<’fz<'... Pgt T0=0,
E and define

: X, = kzo B(((t=k)v Ty )AT K+ 1) - B(’Ck) , t>0.

j? ¢ Thus X consists of diffusion parts of independent exponential

b lenagths, alternating with constant parts of length 1.

? - Since the levels of constancy B(T;),B(7,),... have diffuse
g distributions, it is easily seen that X regenerates at every

R fixed state. But X is not Markov or conditionally Markov, even
5 in the weak sense, since every fixed time t >0 belongs with

: positive probability to some interval of constancy (Tk+k-l,t%+k). a
3
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